Synaptic integration in single neurons
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Why do we care”?



Input-output function of single neurons
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Synaptic conductance and currents

Single synapses are weak and brief
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Equivalent electrical circuit of the membrane
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Vrest T

y i — voltage equals current times resistance
Ohm’slaw: V=IR (only at steady state)

At rest, the cell membrane is electrically equivalent to a parallel RC circuit



Membrane potential in response to step current
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Growing phase: AV = AVSS -(1- e-f/fm)
Decaying phase: AV = AVSS . e_t/T’” z-m — R’nCm

Membrane potential responds to a step current with exponential rise and decay,
governed by the membrane time constant, 7,



Membrane potential in response to synaptic current

EPSP decay through resting (leak)

peak of EPSP ~*Kchannels (determined by 7).

EPSP still rising R
steepest slope of EPSP
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A PSP is slower than a PSC, and its decay is governed by the membrane time
constant, 7,.



Membrane potential in response to synaptic current
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Basic problem

rest

Most neurons need to integrate synaptic input to
generate action potential output

Integration allows for Computation



How is synaptic input integrated ?
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Membrane time constant sets summation time window

Integration
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Basic Input-Output function
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Voltage-gated conductances change O function
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Dendritic trees add a spatial dimension to integration
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Current flow in neuron with dendrites

Fic. 1. Diagram illustrating the flow of electric current from a microelectrode
whose tip penetrates the cell body (soma) of a neuron. The full extent of the den-
drites is not shown. The external electrode to which the current flows is at a dis-

tance far bevond the limits of this diagram. o
Wilfrid Rall



Voltage attenuation in cables
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Compartmental modeling of neurons
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Figure 3.3

Stages in abstraction from an anatomical dendritic tree to an electrical circuit analog.
(A) Two-dimensional projection of part of the soma and one dendrite of a vagus
motoneuron in the guinea pig. Points at which unbranched dendrites were broken
into successive cylindrical segments are indicated by lines. (B) Representation of the
same dendrite as a branched system of cylindrical segments, indicating the length
(below) and diameter (above) of each dendritic segment (in um). Diameters are not
drawn to the same scale as the lengths, but both are in the correct proportions.
The motoneuron soma (shown partially) had a maximum diameter of 20 pm and
minimum diameter of 15 pym. (C) Circuit analog of B (see fig. 3.1) showing the
pattern of connections at branch points and the numbers assigned to circuit nodes
within (even numbers) and between (odd numbers) successive segments.



EPSP attenuation by dendrites
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Effects of location, R, and R, on EPSP attenuation

low R, control low R;
R, = 2,000 cm® R,, = 20,000 cm® R,, = 20,000 cm®
A;=150 cm R;=150 cm R;=75cm
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Input-Output function in dendrites

2. Two excitatory inputs onto the same dendrite
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Computation of input direction
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Voltage-gated conductances change O function
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Voltage-gated conductances change 1O function

|, channels

Lorincz, A. et al. 2002



Dendritic Spikes
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Fig. 4. Composite picture showing the relationship between somatic and dendritic
action potentials following DC depolarization through the recording electrode. A clear
shift in amplitude of the s.s. against the dendritic Ca-dependent potentials is seen when
comparing the more superficial recording in B with the somatic recordingin E. Note that
at increasing distances from the soma the fast spikes are reduced in amplitude and are
barely noticeable in the more peripheral recordings. However, the prolonged and slow-
rising burst spikes are more prominent at dendritic level.

Na* spikes

from Llinas & Sugimori 1980



Dendritic patch-clamp recording

Stuart et al.,
Pfliger’s Archiv, 1993



Dendritic Spikes

Neocortical layer 5 pyramidal neurons
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Stuart and Sakmann, Nature 1994 Stuart et al, J. Physiol. 1997



AP amplitude
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Backpropagating action potentials
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Dopamine neurons: high Na channel
density and little branching.

Layer 5 pyramidal neurons: moderate
Na channel density and moderate
branching; more branching in the tuft.

Purkinje neurons: low Na channel
density (none in dendrites) and
extensive branching.

Vetter et al, J. Neurophysiology, 2001



Normalized action

Backpropagating action potentials
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Active properties in dendrites

Backpropagating ST Dendritic Na spike Dendritic Ca spike

action potential

axon

suprathreshold

soma

\ dendrite

subthreshold

Hausser, M., Spruston, N. and Stuart, G. 2000



Input-output function varies with dendritic location

Basal dendrite Input-output function
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Branco & Hausser 2011



Dendritic computation of input sequences

Patterns Soma voltage
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Near-perfect integration

AGRP neurons
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How do we move forward?



Critical step missing

Measure the actual input-output function of a

single neuron in vivo

while performing a known computation



Measuring input-output subsets in the sensory cortex
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Roadmap

Measure input activity in all synapses

Measure sub and supra-threshold output

Formalise the transformation

Identify key ion channels (molecular biology)

Make models and generate predictions about integration
Test predictions and generalise models

Incorporate in network models and tell PEL how the brain works



