Synaptic integration in single neurons

Tiago Branco

Why do we care?

Input-output function of single neurons

$$
C \frac{d V}{d t}=g_{\text {syn }}\left(V_{\text {syn }}-V_{\text {rest }}\right)
$$

Synaptic conductance and currents

Single synapses are weak and brief

Equivalent electrical circuit of the membrane

$$
\tau_{m}=R_{N} C_{N}
$$

Ohm's law: $\mathbf{V}=\mathbf{I} \mathbf{R}$ voltage equals current times resistance (only at steady state)

At rest, the cell membrane is electrically equivalent to a parallel RC circuit

Membrane potential in response to step current

Growins

Growing phase:

$$
\Delta V=\Delta V_{s s} \cdot\left(1-e^{-t / \tau_{m}}\right)
$$

Decaying phase:

$$
\Delta V=\Delta V_{s s} \cdot e^{-t / \tau_{m}} \quad \tau_{m}=R_{m} C_{m}
$$

Membrane potential responds to a step current with exponential rise and decay, governed by the membrane time constant, τ_{m}

Membrane potential in response to synaptic current

A PSP is slower than a PSC, and its decay is governed by the membrane time constant, τ_{m}.

Membrane potential in response to synaptic current

Basic problem

Most neurons need to integrate synaptic input to generate action potential output

Integration allows for Computation

How is synaptic input integrated?

Timing

Membrane time constant sets summation time window

Basic Input-Output function

Voltage-gated conductances change IO function

$$
C \frac{d V}{d t}+G_{\text {vav }}\left(g_{s y s a r}\left(V_{s}\right) V_{r e s t}\right) V_{\text {reg }} g d_{d a v}\left(V_{C a v}-V_{\text {rest }}\right)+g_{k v}\left(V_{k v}-V_{\text {rest }}\right)
$$

Dendritic trees add a spatial dimension to integration

Current flow in neuron with dendrites

Fig. 1. Diagram illustrating the flow of electric current from a microelectrode whose tip penetrates the cell body (soma) of a neuron. The full extent of the dendrites is not shown. The external electrode to which the current flows is at a distance far beyond the limits of this diagram.

Voltage attenuation in cables

A

a.

b.

c.

FIG. 13.6. Effect of different modes of termination on the spread of electrotonic potential A. Graph of steady-state potential spread for the case of a sealed end at $\lambda=1$ (a), an infinite extension of the cable (b), and an open end (short-circuit) at $\lambda=1$ (c). Diagrams illustrating each of the boundary conditions in A. (Modified from Rall, 1958.)

Space constant

$$
\lambda=\sqrt{\frac{R_{m} \cdot d}{R_{i} \cdot 4}}
$$

Voltage attenuation

$$
V=V_{0} e^{-x / \lambda}
$$

Electrotonic distance

$$
X=x / \lambda
$$

Compartmental modeling of neurons

The NEURON simulation

 environment
Figure 3.3

Stages in abstraction from an anatomical dendritic tree to an electrical circuit analog. (A) Two-dimensional projection of part of the soma and one dendrite of a vagus
motoneuron in the guinea pig. Points at which unbranched dendrites were broser motoneuron in the guinea pig. Points at which unbranched dendrites were broken
into successive cylindrical segments are indicated by lines. (B) Representation of the into successive cylindrical segments are indicated by lines. (B) Representation of the
same dendrite as a branched system of cylindrical segments, indicating the length (below) and diameter (above) of each dendritic segment (in μm). Diameters are not
drawn to the same scale as the lenths, but both are in the correct proportions drawn to the same scale as the lengths, but both are in the correct proportions.
The motoneuron soma (shown partially) had a maximum diameter of $20 \mu \mathrm{~m}$ and The motoneuron soma (shown partially) had a maximum diameter of $20 \mu \mathrm{~m}$ and
minimum diameter of $15 \mu \mathrm{~m}$. (C) Circuit analog of \mathbf{B} (see fig. 3.1) showing the pattern of connections at branch points and the numbers assigned to circuit nodes pithin (even numbers) and between (odd numbers) successive segments.

EPSP attenuation by dendrites

Wilfrid Rall, 1964

Effects of location, R_{m} and R_{i} on EPSP attenuation

Input-Output function in dendrites

2. Two excitatory inputs onto the same dendrite

Computation of input direction

Rall, W. 1964

Voltage-gated conductances change IO function

$$
C \frac{d V}{d t}=g_{\text {syn }}\left(V_{\text {syn }}-V_{\text {rest }}\right)+g_{\text {Nav }}\left(V_{\text {Nav }}-V_{\text {rest }}\right)+g_{C a v}\left(V_{\text {Cav }}-V_{\text {rest }}\right)+g_{\mathrm{kv}}\left(V_{\mathrm{kv}}-V_{\text {rest }}\right)
$$

Voltage-gated conductances change IO function

Dendritic Spikes

A

Na^{+}spikes

Fig. 4. Composite picture showing the relationship between somatic and dendritic action potentials following DC depolarization through the recording electrode. A clear shift in amplitude of the s.s. against the dendritic Ca-dependent potentials is seen when comparing the more superficial recording in B with the somatic recording in E. Note that at increasing distances from the soma the fast spikes are reduced in amplitude and are barely noticeable in the more peripheral recordings. However, the prolonged and slowrising burst spikes are more prominent at dendritic level.

Dendritic patch-clamp recording

Stuart et al.,
Pflüger's Archiv, 1993

Dendritic Spikes

Neocortical layer 5 pyramidal neurons

Stuart and Sakmann, Nature 1994

Backpropagating action potentials

Dopamine neurons: high Na channel density and little branching.

Layer 5 pyramidal neurons: moderate Na channel density and moderate branching; more branching in the tuft.

Purkinje neurons: low Na channel density (none in dendrites) and extensive branching.

Backpropagating action potentials

Active properties in dendrites

Input-output function varies with dendritic location

Basal dendrite

- Proximal

Input-output function

Dendritic computation of input sequences

Patterns

Soma voltage

Near-perfect integration

Persistent Na current

How do we move forward?

Critical step missing

Measure the actual input-output function of a single neuron in vivo

while performing a known computation

Measuring input-output subsets in the sensory cortex

Roadmap

Measure input activity in all synapses

Measure sub and supra-threshold output

Formalise the transformation

Identify key ion channels (molecular biology)
Make models and generate predictions about integration

Test predictions and generalise models
Incorporate in network models and tell PEL how the brain works

